viernes, 22 de mayo de 2020

DOWNLOAD COWPATTY WIFI PASSOWORD CRACKING TOOL

COWPATTY WIFI PASSWORD CRACKING TOOL

CoWPAtty is a wifi password cracking tool. Implementation of a dictionary attack against WPA/WPA2 networks using PSK-based authentication (e.g. WPA-Personal). Many enterprise networks deploy PSK-based authentication mechanisms for WPA/WPA2 since it is much easier than establishing the necessary RADIUS, supplicant and certificate authority architecture needed for WPA-Enterprise authentication. Cowpatty can implement an accelerated attack if a precomputed PMK file is available for the SSID that is being assessed. Download coWPAtty wifi password cracking tool.
It's a pre-built tool for Kali Linux which you can find in the /usr/local/bin directory. It's also available for the windows but it doesn't work as fine as it does in the Kali.

DOWNLOAD COWPATTY WIFI PASSWORD CRACKING TOOL

For windows, you can download it from here. As it becomes pre-built in Kali, you do not need to download it. You just have to follow the path /usr/local/bin directory to find it in your Kali Linux OS.
Continue reading

jueves, 21 de mayo de 2020

CEH: Fundamentals Of Social Engineering


Social engineering is a nontechnical method of breaking into a system or network. It's the process of deceiving users of a system and convincing them to perform acts useful to the hacker, such as giving out information that can be used to defeat or bypass security mechanisms. Social engineering is important to understand because hackers can use it to attack the human element of a system and circumvent technical security measures. This method can be used to gather information before or during an attack.

A social engineer commonly uses the telephone or Internet to trick people into revealing sensitive information or to get them to do something that is against the security policies of the organization. By this method, social engineers exploit the natural tendency of a person to trust their word, rather than exploiting computer security holes. It's generally agreed that users are the weak link in security; this principle is what makes social engineering possible.

The most dangerous part of social engineering is that companies with authentication processes, firewalls, virtual private networks, and network monitoring software are still wide open to attacks, because social engineering doesn't assault the security measures directly. Instead, a social-engineering attack bypasses the security measures and goes after the human element in an organization.

Types of Social Engineering-Attacks

There are two types of Social Engineering attacks

Human-Based 

Human-based social engineering refers to person-to-person interaction to retrieve the desired information. An example is calling the help desk and trying to find out a password.

Computer-Based 

​Computer-based social engineering refers to having computer software that attempts to retrieve the desired information. An example is sending a user an email and asking them to reenter a password in a web page to confirm it. This social-engineering attack is also known as phishing.

Human-Based Social Engineering

Human-Based further categorized as follow:

Impersonating an Employee or Valid User

In this type of social-engineering attack, the hacker pretends to be an employee or valid user on the system. A hacker can gain physical access by pretending to be a janitor, employee, or contractor. Once inside the facility, the hacker gathers information from trashcans, desktops, or computer systems.

Posing as an Important User

In this type of attack, the hacker pretends to be an important user such as an executive or high-level manager who needs immediate assistance to gain access to a computer system or files. The hacker uses intimidation so that a lower-level employee such as a help desk worker will assist them in gaining access to the system. Most low-level employees won't question someone who appears to be in a position of authority.

Using a Third Person

Using the third-person approach, a hacker pretends to have permission from an authorized source to use a system. This attack is especially effective if the supposed authorized source is on vacation or can't be contacted for verification.

Calling Technical Support

Calling tech support for assistance is a classic social-engineering technique. Help desk and technical support personnel are trained to help users, which makes them good prey for social-engineering attacks.

Shoulder Surfing 

Shoulder surfing is a technique of gathering passwords by watching over a person's shoulder while they log in to the system. A hacker can watch a valid user log in and then use that password to gain access to the system.

Dumpster Diving

Dumpster diving involves looking in the trash for information written on pieces of paper or computer printouts. The hacker can often find passwords, filenames, or other pieces of confidential information.

Computer-Based Social Engineering

Computer-based social-engineering attacks can include the following:
  • Email attachments
  • Fake websites
  • Pop-up windows


Insider Attacks

If a hacker can't find any other way to hack an organization, the next best option is to infiltrate the organization by getting hired as an employee or finding a disgruntled employee to assist in the attack. Insider attacks can be powerful because employees have physical access and are able to move freely about the organization. An example might be someone posing as a delivery person by wearing a uniform and gaining access to a delivery room or loading dock. Another possibility is someone posing as a member of the cleaning crew who has access to the inside of the building and is usually able to move about the offices. As a last resort, a hacker might bribe or otherwise coerce an employee to participate in the attack by providing information such as passwords.

Identity Theft

A hacker can pose as an employee or steal the employee's identity to perpetrate an attack. Information gathered in dumpster diving or shoulder surfing in combination with creating fake ID badges can gain the hacker entry into an organization. Creating a persona that can enter the building unchallenged is the goal of identity theft.

Phishing Attacks

Phishing involves sending an email, usually posing as a bank, credit card company, or other financial organization. The email requests that the recipient confirm banking information or reset passwords or PINs. The user clicks the link in the email and is redirected to a fake website. The hacker is then able to capture this information and use it for financial gain or to perpetrate other attacks. Emails that claim the senders have a great amount of money but need your help getting it out of the country are examples of phishing attacks. These attacks prey on the common person and are aimed at getting them to provide bank account access codes or other confidential information to the hacker.

Online Scams

Some websites that make free offers or other special deals can lure a victim to enter a username and password that may be the same as those they use to access their work system.
The hacker can use this valid username and password once the user enters the information in the website form. Mail attachments can be used to send malicious code to a victim's system, which could automatically execute something like a software keylogger to capture passwords. Viruses, Trojans, and worms can be included in cleverly crafted emails to entice a victim to open the attachment. Mail attachments are considered a computer-based social-engineering attack.

More information


  1. Hardware Hacking Tools
  2. Portatil Para Hacking
  3. Hacking Time
  4. Mindset Hacking Español
  5. Hacking Tutorials
  6. Portatil Para Hacking
  7. Libros Para Aprender A Hackear
  8. Hacking Bluetooth Speaker
  9. Etica Hacker
  10. Hacking Social
  11. Hacking Prank
  12. Que Hace Un Hacker
  13. Phishing Hacking
  14. Hacking Significado
  15. Herramientas Growth Hacking

Cain And Abel

"Cain & Abel is a password recovery tool for Microsoft Operating Systems. It allows easy recovery of various kind of passwords by sniffing the network, cracking encrypted passwords using Dictionary, Brute-Force and Cryptanalysis attacks, recording VoIP conversations, decoding scrambled passwords, recovering wireless network keys, revealing password boxes, uncovering cached passwords and analyzing routing protocols. The program does not exploit any software vulnerabilities or bugs that could not be fixed with little effort. It covers some security aspects/weakness present in protocol's standards, authentication methods and caching mechanisms; its main purpose is the simplified recovery of passwords and credentials from various sources, however it also ships some "non standard" utilities for Microsoft Windows users." read more...

Website: http://www.oxid.it/cain.html

More information

TYPES OF HACKER

7 Types of hacker 

1-Script Kiddies-They are  just download overused software & watch youtube video on how to use it. Script kiddies don't care about hacking.

2-White Hat-They are the good guys of the hacker world. They also known as Ethical Hacker.

3-Black Hat-They finds bank or other companies with weak security and steal money or credit card information. They also known as cracker. They are dangerous because they are illegal to gain unauthorized access.

4-Gray Hat-They don't steal money or information sometimes they deface a website or they don't help people for good.

5-Green Hat-These are the hacker "noobz" but unlike Script Kiddies.They care about Hacking  and strive to become full-blown hacker.

6-Red Hat-These are the vigilantes of the hacker world. They are like White Hats in that they halt Black Hats but these folks are downright SCARY to those who have ever tried so much as penetrest.

7-Blue Hat-If a Script Kiddy took revenge he/she might become a Blue Hat.Most Blue Hats are noobz.They have no desire to learn.

More articles

Scanning TLS Server Configurations With Burp Suite

In this post, we present our new Burp Suite extension "TLS-Attacker".
Using this extension penetration testers and security researchers can assess the security of TLS server configurations directly from within Burp Suite.
The extension is based on the TLS-Attacker framework and the TLS-Scanner, both of which are developed by the Chair for Network and Data Security.

You can find the latest release of our extension at: https://github.com/RUB-NDS/TLS-Attacker-BurpExtension/releases

TLS-Scanner

Thanks to the seamless integration of the TLS-Scanner into the BurpSuite, the penetration tester only needs to configure a single parameter: the host to be scanned.  After clicking the Scan button, the extension runs the default checks and responds with a report that allows penetration testers to quickly determine potential issues in the server's TLS configuration.  Basic tests check the supported cipher suites and protocol versions.  In addition, several known attacks on TLS are automatically evaluated, including Bleichenbacher's attack, Padding Oracles, and Invalid Curve attacks.

Furthermore, the extension allows fine-tuning for the configuration of the underlying TLS-Scanner.  The two parameters parallelProbes and overallThreads can be used to improve the scan performance (at the cost of increased network load and resource usage).

It is also possible to configure the granularity of the scan using Scan Detail and Danger Level. The level of detail contained in the returned scan report can also be controlled using the Report Detail setting.

Please refer to the GitHub repositories linked above for further details on configuration and usage of TLS-Scanner.

Scan History 

If several hosts are scanned, the Scan History tab keeps track of the preformed scans and is a useful tool when comparing the results of subsequent scans.

Additional functions will follow in later versions

Currently, we are working on integrating an at-a-glance rating mechanism to allow for easily estimating the security of a scanned host's TLS configuration.

This is a combined work of Nurullah Erinola, Nils Engelbertz, David Herring, Juraj Somorovsky, Vladislav Mladenov, and Robert Merget.  The research was supported by the European Commission through the FutureTrust project (grant 700542-Future-Trust-H2020-DS-2015-1).

If you would like to learn more about TLS, Juraj and Robert will give a TLS Training at Ruhrsec on the 27th of May 2019. There are still a few seats left.

More articles


  1. Aprender Hacking Desde Cero
  2. Hacking Quotes
  3. Curso Ethical Hacking
  4. Curso Seguridad Informatica
  5. Growth Hacking Que Es
  6. Hacking With Swift
  7. Hacking Linux
  8. Nivel Basico
  9. Google Hacking
  10. Retos Hacking
  11. Hacking Etico Certificacion
  12. Tools For Hacking Wifi
  13. Blog Seguridad Informática
  14. Growth Hacking Marketing
  15. Best Hacking Games

miércoles, 20 de mayo de 2020

DOWNLOAD BLACK STEALER V2.1 FULL

BLACK STEALER V2.1 FULL

Black Stealer v2.1 is an advanced keylogger that can steal even saved passwords from the browsers and sends through Email and FTP. It's really easy to the crypt. Keylogger is a computer program that is a type of surveillance technology used to monitor and record each keystroke typed on a specific computer's keyboard by the user, especially in order to gain unauthorized access to the passwords and other confidential information. It's also called a keystroke logger or system monitor. Download black stealer v2.1 full.

DOWNLOAD BLACK STEALER V2.1 FULL

More information


  1. Hacker Etico
  2. El Mejor Hacker Del Mundo
  3. Curso Growth Hacking
  4. Body Hacking
  5. Body Hacking
  6. Hacking Food
  7. What Is Growth Hacking
  8. Tools For Hacking Wifi
  9. 101 Hacking
  10. Kali Hacking
  11. Hacking Bluetooth Speaker
  12. Growth Hacking Ejemplos
  13. Hacking Etico Curso Gratis
  14. Hacking Code
  15. Como Aprender A Hackear Desde Cero
  16. Hacking Libro

martes, 19 de mayo de 2020

Practical Bleichenbacher Attacks On IPsec IKE

We found out that reusing a key pair across different versions and modes of IPsec IKE can lead to cross-protocol authentication bypasses, enabling the impersonation of a victim host or network by attackers. These vulnerabilities existed in implementations by Cisco, Huawei, and others.

This week at the USENIX Security conference, I will present our research paper on IPsec attacks: The Dangers of Key Reuse: Practical Attacks on IPsec IKE written by Martin Grothe, Jörg Schwenk, and me from Ruhr University Bochum as well as Adam Czubak and Marcin Szymanek from the University of Opole [alternative link to the paper]. This blog post is intended for people who like to get a comprehensive summary of our findings rather than to read a long research paper.

IPsec and Internet Key Exchange (IKE)

IPsec enables cryptographic protection of IP packets. It is commonly used to build VPNs (Virtual Private Networks). For key establishment, the IKE protocol is used. IKE exists in two versions, each with different modes, different phases, several authentication methods, and configuration options. Therefore, IKE is one of the most complex cryptographic protocols in use.

In version 1 of IKE (IKEv1), four authentication methods are available for Phase 1, in which initial authenticated keying material is established: Two public key encryption based methods, one signature based method, and a PSK (Pre-Shared Key) based method.

Attacks on IKE implementations

With our attacks we can impersonate an IKE device: If the attack is successful, we share a set of (falsely) authenticated symmetric keys with the victim device, and can successfully complete the handshake – this holds for both IKEv1 and IKEv2. The attacks are based on Bleichenbacher oracles in the IKEv1 implementations of four large network equipment manufacturers: Cisco, Huawei, Clavister, and ZyXEL. These Bleichenbacher oracles can also be used to forge digital signatures, which breaks the signature based IKEv1 and IKEv2 variants. Those who are unfamiliar with Bleichenbacher attacks may read this post by our colleague Juraj Somorovsky for an explanation.

The affected hardware test devices by Huawei, Cisco, and ZyXEL in our network lab.

We show that the strength of these oracles is sufficient to break all handshake variants in IKEv1 and IKEv2 (except those based on PSKs) when given access to powerful network equipment. We furthermore demonstrate that key reuse across protocols as implemented in certain network equipment carries high security risks.

We additionally show that both PSK based modes can be broken with an offline dictionary attack if the PSK has low entropy. Such an attack was previously only documented for one of those modes (edit: see this comment). We thus show attacks against all authentication modes in both IKEv1 and IKEv2 under reasonable assumptions.

The relationship between IKEv1 Phase 1, Phase 2, and IPsec ESP. Multiple simultaneous Phase 2 connections can be established from a single Phase 1 connection. Grey parts are encrypted, either with IKE derived keys (light grey) or with IPsec keys (dark grey). The numbers at the curly brackets denote the number of messages to be exchanged in the protocol.

Where's the bug?

The public key encryption (PKE) based authentication mode of IKE requires that both parties exchanged their public keys securely beforehand (e. g. with certificates during an earlier handshake with signature based authentication). RFC 2409 advertises this mode of authentication with a plausibly deniable exchange to raise the privacy level. In this mode, messages three and four of the handshake exchange encrypted nonces and identities. They are encrypted using the public key of the respective other party. The encoding format for the ciphertexts is PKCS #1 v1.5.

Bleichenbacher attacks are adaptive chosen ciphertext attacks against RSA-PKCS #1 v1.5. Though the attack has been known for two decades, it is a common pitfall for developers. The mandatory use of PKCS #1 v1.5 in the PKE authentication methods raised suspicion of whether implementations resist Bleichenbacher attacks.

PKE authentication is available and fully functional in Cisco's IOS operating system. In Clavister's cOS and ZyXEL's ZyWALL USG devices, PKE is not officially available. There is no documentation and no configuration option for it and it is therefore not fully functional. Nevertheless, these implementations processed messages using PKE authentication in our tests.

Huawei implements a revised mode of the PKE mode mentioned in the RFC that saves one private key operation per peer (we call it RPKE mode). It is available in certain Huawei devices including the Secospace USG2000 series.

We were able to confirm the existence of Bleichenbacher oracles in all these implementations. Here are the CVE entries and security advisories by the vendors (I will add links once they are available):
On an abstract level, these oracles work as follows: If we replace the ciphertext of the nonce in the third handshake message with a modified RSA ciphertext, the responder will either indicate an error (Cisco, Clavister, and ZyXEL) or silently abort (Huawei) if the ciphertext is not PKCS #1 v1.5 compliant. Otherwise, the responder continues with the fourth message (Cisco and Huawei) or return an error notification with a different message (Clavister and ZyXEL) if the ciphertext is in fact PKCS #1 v1.5 compliant. Each time we learn that the ciphertext was valid, we can advance the Bleichenbacher attack one more step.

A Bleichenbacher Attack Against PKE

If a Bleichenbacher oracle is discovered in a TLS implementation, then TLS-RSA is broken since one can compute the Premaster Secret and the TLS session keys without any time limit on the usage of the oracle. For IKEv1, the situation is more difficult: Even if there is a strong Bleichenbacher oracle in PKE and RPKE mode, our attack must succeed within the lifetime of the IKEv1 Phase 1 session, since a Diffie-Hellman key exchange during the handshake provides an additional layer of security that is not present in TLS-RSA. For example, for Cisco this time limit is currently fixed to 60 seconds for IKEv1 and 240 seconds for IKEv2.

To phrase it differently: In TLS-RSA, a Bleichenbacher oracle allows to perform an ex post attack to break the confidentiality of the TLS session later on, whereas in IKEv1 a Bleichenbacher oracle only can be used to perform an online attack to impersonate one of the two parties in real time.

Bleichenbacher attack against IKEv1 PKE based authentication.

The figure above depicts a direct attack on IKEv1 PKE:
  1. The attackers initiate an IKEv1 PKE based key exchange with Responder A and adhere to the protocol until receiving the fourth message. They extract the encrypted nonce from this message, and record the other public values of the handshake.
  2. The attackers keep the IKE handshake with Responder A alive as long as the responder allows. For Cisco and ZyXEL we know that handshakes are cancelled after 60 seconds, Clavister and Huawei do so after 30 seconds.
  3. The attackers initiate several parallel PKE based key exchanges to Responder B.
    • In each of these exchanges, they send and receive the first two messages according to the protocol specifications.
    • In the third message, they include a modified version of the encrypted nonce according to the the Bleichenbacher attack methodology.
    • They wait until they receive an answer or they can reliably determine that this message will not be sent (timeout or reception of a repeated second handshake message).
  4. After receiving enough answers from Responder B, the attackers can compute the plaintext of the nonce.
  5. The attackers now have all the information to complete the key derivation and the handshake. They thus can impersonate Responder B to Responder A.

Key Reuse

Maintaining individual keys and key pairs for each protocol version, mode, and authentication method of IKE is difficult to achieve in practice. It is oftentimes simply not supported by implementations. This is the case with the implementations by Clavister and ZyXEL, for example. Thus, it is common practice to have only one RSA key pair for the whole IKE protocol family. The actual security of the protocol family in this case crucially depends on its cross-ciphersuite and cross-version security. In fact, our Huawei test device reuses its RSA key pair even for SSH host identification, which further exposes this key pair.

A Cross-Protocol Version Attack with Digital Signature Based Authentication

Signature Forgery Using Bleichenbacher's Attack

It is well known that in the case of RSA, performing a decryption and creating a signature is mathematically the same operation. Bleichenbacher's original paper already mentioned that the attack could also be used to forge signatures over attacker-chosen data. In two papers that my colleagues at our chair have published, this has been exploited for attacks on XML-based Web Services, TLS 1.3, and Google's QUIC protocol. The ROBOT paper used this attack to forge a signature from Facebook's web servers as proof of exploitability.

IKEv2 With Digital Signatures

Digital signature based authentication is supported by both IKEv1 and IKEv2. We focus here on IKEv2 because on Cisco routers, an IKEv2 handshake may take up to four minutes. This more relaxed timer compared to IKEv1 makes it an interesting attack target.

I promised that this blogpost will only give a comprehensive summary, therefore I am skipping all the details about IKEv2 here. It is enough to know that the structure of IKEv2 is fundamentally different from IKEv1.

If you're familiar with IT-security, then you will believe me that if digital signatures are used for authentication, it is not particularly good if an attacker can get a signature over attacker chosen data. We managed to develop an attack that exploits an IKEv1 Bleichenbacher oracle at some peer A to get a signature that can be used to break the IKEv2 authentication at another peer B. This requires that peer A reuses its key pair for IKEv2 also for IKEv1. For the details, please read our paper [alternative link to the paper].

Evaluation and Results

For testing the attack, we used a Cisco ASR 1001-X router running IOS XE in version 03.16.02.S with IOS version 15.5(3)S2. Unfortunately, Cisco's implementation is not optimized for throughput. From our observations we assume that all cryptographic calculations for IKE are done by the device's CPU despite it having a hardware accelerator for cryptography. One can easily overload the device's CPU for several seconds with a standard PC bursting handshake messages, even with the default limit for concurrent handshakes. And even if the CPU load is kept below 100 %, we nevertheless observed packet loss.

For the decryption attack on Cisco's IKEv1 responder, we need to finish the Bleichenbacher attack in 60 seconds. If the public key of our ASR 1001-X router is 1024 bits long, we measured an average of 850 responses to Bleichenbacher requests per second. Therefore, an attack must succeed with at most 51,000 Bleichenbacher requests.

But another limit is the management of Security Associations (SAs). There is a global limit of 900 Phase 1 SAs under negotiation per Cisco device in the default configuration. If this number is exceeded, one is blocked. Thus, one cannot start individual handshakes for each Bleichenbacher request to issue. Instead, SAs have to be reused as long as their error counter allows. Furthermore, establishing SAs with Cisco IOS is really slow. During the attack, the negotiations in the first two messages of IKEv1 require more time than the actual Bleichenbacher attack.

We managed to perform a successful decryption attack against our ASR 1001-X router with approximately 19,000 Bleichenbacher requests. However, due to the necessary SA negotiations, the attack took 13 minutes.

For the statistics and for the attack evaluation of digital signature forgery, we used a simulator with an oracle that behaves exactly as the ones by Cisco, Clavister, and ZyXEL. We found that about 26% of attacks against IKEv1 could be successful based on the cryptographic performance of our Cisco device. For digital signature forgery, about 22% of attacks could be successful under the same assumptions.

Note that (without a patched IOS), only non-cryptographic performance issues prevented a succesful attack on our Cisco device. There might be faster devices that do not suffer from this. Also note that a too slow Bleichenbacher attack does not permanently lock out attackers. If a timeout occurs, they can just start over with a new attack using fresh values hoping to require fewer requests. If the victim has deployed multiple responders sharing one key pair (e. g. for load balancing), this could also be leveraged to speed up an attack.

Responsible Disclosure

We reported our findings to Cisco, Huawei, Clavister, and ZyXEL. Cisco published fixes with IOS XE versions 16.3.6, 16.6.3, and 16.7.1. They further informed us that the PKE mode will be removed with the next major release.

Huawei published firmware version V300R001C10SPH702 for the Secospace USG2000 series that removes the Bleichenbacher oracle and the crash bugs we identified. Customers who use other affected Huawei devices will be contacted directly by their support team as part of a need-to-know strategy.

Clavister removed the vulnerable authentication method with cOS version 12.00.09. ZyXEL responded that our ZyWALL USG 100 test device is from a legacy model series that is end-of-support. Therefore, these devices will not receive a fix. For the successor models, the patched firmware version ZLD 4.32 (Release Notes) is available.

FAQs

  • Why don't you have a cool name for this attack?
    The attack itself already has a name, it's Bleichenbacher's attack. We just show how Bleichenbacher attacks can be applied to IKE and how they can break the protocol's security. So, if you like, call it IPsec-Bleichenbacher or IKE-Bleichenbacher.
  • Do you have a logo for the attack?
    No.
  • My machine was running a vulnerable firmware. Have I been attacked?
    We have no indication that the attack was ever used in the wild. However, if you are still concerned, check your logs. The attack is not silent. If your machine was used for a Bleichenbacher attack, there should be many log entries about decryption errors. If your machine was the one that got tricked (Responder A in our figures), then you could probably find log entries about unfinished handshake attempts.
  • Where can I learn more?
    First of all, you can read the paper [alternative link to the paper]. Second, you can watch the presentation, either live at the conference or later on this page.
  • What else does the paper contain?
    The paper contains a lot more details than this blogpost. It explains all authentication methods including IKEv2 and it gives message flow diagrams of the protocols. There, we describe a variant of the attack that uses the Bleichenbacher oracles to forge signatures to target IKEv2. Furthermore, we describe the quirks of Huawei's implementation including crash bugs that could allow for Denial-of-Service attacks. Last but not least, it describes a dictionary attack against the PSK mode of authentication that is covered in a separate blogpost.

Media Coverage, Blogs, and more

English

German

Related news


  1. Curso De Hacking Gratis
  2. Hacker Blanco
  3. Como Aprender A Hackear
  4. Hacking Games
  5. Como Empezar En El Hacking
  6. Blackhat Hacking
  7. Python Hacking
  8. Tools For Hacking Wifi
  9. Best Hacking Games
  10. Growth Hacking Pdf
  11. Libros Hacking
  12. Hacking Ethical
  13. Hacking Code
  14. Diferencia Entre Hacker Y Cracker
  15. Hacking Web Sql Injection
  16. Hacking Microsoft

TLS V1.2 Sigalgs Remote Crash (CVE-2015-0291)


OpenSSL 1.0.2a fix several security issues, one of them let crash TLSv1.2 based services remotelly from internet.


Regarding to the TLSv1.2 RFC,  this version of TLS provides a "signature_algorithms" extension for the client_hello. 

Data Structures


If a bad signature is sent after the renegotiation, the structure will be corrupted, becouse structure pointer:
s->c->shared_sigalgs will be NULL, and the number of algorithms:
s->c->shared_sigalgslen will not be zeroed.
Which will be interpreted as one algorithm to process, but the pointer points to 0x00 address. 


Then tls1_process_sigalgs() will try to process one signature algorithm (becouse of shared_sigalgslen=1) then sigptr will be pointer to c->shared_sigalgs (NULL) and then will try to derreference sigptr->rhash. 


This mean a Segmentation Fault in  tls1_process_sigalgs() function, and called by tls1_set_server_sigalgs() with is called from ssl3_client_hello() as the stack trace shows.




StackTrace

The following code, points sigptr to null and try to read sigptr->rsign, which is assembled as movzbl eax,  byte ptr [0x0+R12] note in register window that R12 is 0x00

Debugger in the crash point.


radare2 static decompiled


The patch fix the vulnerability zeroing the sigalgslen.
Get  David A. Ramos' proof of concept exploit here





Related news

  1. Como Convertirse En Hacker
  2. Hacking Linkedin
  3. Hacking Health
  4. Hacking Pages
  5. Cracker Informatico
  6. Que Estudia Un Hacker
  7. Linux Hacking Distro
  8. Hacking Net
  9. Google Hacking Database
  10. Programa De Hacking
  11. Que Estudia Un Hacker
  12. Hacking Hardware Tools
  13. Javascript Hacking
  14. Paginas Para Hackear
  15. Mundo Hacker
  16. Hacking Windows: Ataques A Sistemas Y Redes Microsoft

October 2019 Connector

OWASP
Connector
October 2019

COMMUNICATIONS


Letter from the Vice Chairman of the Board

Dear OWASP Community,  

Two of the primary initiatives the foundation staff has been working on over the past few months were the two back to back Global AppSec Events in DC and Amsterdam.  This was a huge undertaking by everyone involved.  We are pleased to announce that the survey feed back is positive and both events were well attended.  I was in attendance of Global AppSec Amsterdam and it was great meeting and speaking with old friends and meeting new ones.  I would also like to take this opportunity, on behalf of the board to thank OWASP staff for their efforts in making the two conferences so successful. 

To continuing on with the events theme; I'm really happy to announce the locations of our 2020 OWASP Global AppSec Conferences.  The first one will be June 15 - 19, 2020 in Dublin and the second will be October 19 - 23, 2020 in San Francisco.  Dublin is not an exotic trip for me, more of a 10 minute tram ride.  Hopefully you will join us, while also making the most of the culture and scenery that Ireland has to offer.   

Last but not least, the OWASP Global Board of Directors election results where released Thursday October 17, 2019. I'd like to first thank everyone who has put their trust in me by voting me back onto the board for the next two years. I hope I do you justice.

I would also like to thank the large number of candidates that were willing to give of their personal time and run to be part of the Global OWASP Board.  This is a testament of the dedication and commitment of our members to continue to grow and evolve to the next level as an organization.  I encourage those that were not elected will still be involved in making a positive change by volunteering to be part of a committee.  The board and staff need all the help they can get to push through change. I hope you will join us in this journey.  We can not be successful without the help of the community. 

Until next time, 
Owen Pendlebury 
Vice Chairman, OWASP Global Board of Directors 
OWASP Global Board Election Results 
 
The newly elected 2020 OWASP Board Members:
Grant Ongers
Owen Pendlebury
Sherif Mansour
Vandana Verma Sengal
 
Congratulations, and thank you to all the candidates that participated and the OWASP members that voted. 
OWASP Foundation Global AppSec Event Dates for 2020

Global AppSec Dublin, June 15 - 19, 2020

Global AppSec San Francisco, October 19 - 23, 2020



Visit our website for future announcements.

EVENTS 

You may also be interested in one of our other affiliated events:


REGIONAL EVENTS
Event DateLocation
BASC 2019 (Boston Application Security Conference) October 19,2019 Burlington, MA
LASCON X October 24 - 25, 2019 Austin, TX
OWASP AppSec Day 2019 Oct 30 - Nov 1, 2019 Melbourne, Australia
German OWASP Day 2019 December 9 - 10, 2019 Karlsruhe, Germany
AppSec California 2020 January 21 - 24, 2020 Santa Monica, CA
OWASP New Zealand Day 2020 February 20 - 21, 2020 Auckland, New Zealand
Seasides 2020 March 3 - 5, 2020 Panjim Goa, India
SnowFROC 2020 March 5, 2020 Denver, CO

GLOBAL PARTNERSHIP EVENTS
Event Date Location
BlackHat Europe 2019 December 2 - 5, 2019 London


BlackHat Europe 2019 London at EXCEL London
2019 December 2-5 
Visit the OWASP Booth 1015
Business Hall December 4 & 5 
December 4, 10:30 AM - 7:00 PM
December 5: 10:00 AM - 4:00 PM

OWASP Members are eligible for € 200.00 discount , email marketing@owasp.org for code to use when registering.

PROJECTS

Projects were well-represented at the previous two Global AppSec conferences in DC and Amsterdam this past month.  Both events featured the popular Project Showcase and I heartily thank the leaders of the projects who participated:

Secure Medical Device Deployment Standard
Secure Coding Dojo
API Security Project
Dependency Check
SAMM
SEDATED
DefectDojo
Juice Shop
ModSecuity Core Rule Set
SecurityRAT
WebGoat

These leaders put on a great set of presentations and, in many cases, the room was standing room only.  Thank you!

The project reviews that were done in DC and Amsterdam are still being evaluated and worked on; if you are waiting on answers, please have patience.  I hope to have them finalized by November.

The website migration continues moving forward.  The process of adding users to the proper repositories is an on-going effort.  If you have not given your GitHub username, please drop by the Request for Leader Github Usernames form.  A nice-to-accomplish goal would be to have the projects and chapters in their new website homes within the next 30 days.

Harold L. Blankenship
Director of Technology and Projects

COMMUNITY

Welcome to the New OWASP Chapters 
Sacramento, California
Marquette, Michigan
Ranchi, India
Paraiba, Brazil
Calgary, Canada 

CORPORATE MEMBERS 

 
Premier Corporate Member
Contributor Corporate Members

*Ads and logos are not endorsements and reflect the messages of the advertiser only. *
Join us
Donate
Our mailing address is:
OWASP Foundation 
1200-C Agora Drive, #232
Bel Air, MD 21014  
Contact Us
Unsubscribe






This email was sent to *|EMAIL|*
why did I get this?    unsubscribe from this list    update subscription preferences
*|LIST:ADDRESSLINE|*